Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 731, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272899

RESUMO

Organic light-emitting diodes (OLEDs) exploiting simple binary emissive layers (EMLs) blending only emitters and hosts have natural advantages in low-cost commercialization. However, previously reported OLEDs based on binary EMLs hardly simultaneously achieved desired comprehensive performances, e.g., high efficiency, low efficiency roll-off, narrow emission bands, and high operation stability. Here, we report a molecular-design strategy. Such a strategy leads to a fast reverse intersystem crossing rate in our designed emitter h-BNCO-1 of 1.79×105 s-1. An OLED exploiting a binary EML with h-BNCO-1 achieves ultrapure emission, a maximum external quantum efficiency of over 40% and a mild roll-off of 14% at 1000 cd·m-2. Moreover, h-BNCO-1 also exhibits promising operational stability in an alternative OLED exploiting a compact binary EML (the lifetime reaching 95% of the initial luminance at 1000 cd m-2 is ~ 137 h). Here, our work has thus provided a molecular-design strategy for OLEDs with promising comprehensive performance.

2.
Mater Horiz ; 10(10): 4224-4231, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37538049

RESUMO

Atomically separated frontier molecular orbital (FMO) distribution plays a crucial role in achieving narrowband emissions for multiple resonance (MR)-type thermally activated delayed fluorescence emitters. Directly peripherally decorating a MR framework with donor or acceptor groups is a common strategy for developing MR emitters. However, this approach always induces bonding features and thus spectral broadening as a side effect. How direct donor/acceptor decoration enhances atomic FMO separation while avoiding bonding features has not been explored. For this aim, two MR derivatives are synthesized by integrating two MR frameworks at different sites. Following resonance alignment, DOBNA-m-CzBN avoids breaking nonbonding FMO features at the single connecting bond and shows enhanced MR characteristics, with a sharp emission at 491 nm and a full width at half maximum (FWHM) of 24 nm/118 meV. Conversely, DOBNA-p-CzBN emerges as a bonding feature due to its continuous π-conjugation extension, with a broadened FWHM of 26 nm/132 meV peaking at 497 nm. Impressively, both emitters exhibit outstanding external quantum efficiencies of 37.8-38.6% in organic light-emitting diodes (OLEDs), demonstrating improved performance with rigid acceptor decoration. Distinctly, the electroluminescence of DOBNA-m-CzBN shows a narrower FWHM than that of DOBNA-p-CzBN. This work for the first time reports the enhancement of atomic FMO separation for MR emitters via peripheral decoration through a single bond and provides a more comprehensive illustration for further development of MR emitters.

3.
Angew Chem Int Ed Engl ; 62(35): e202305580, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37431732

RESUMO

Hindered by spectral broadening issues with redshifted emission, long-wavelength (e.g., maxima beyond 570 nm) multiple resonance (MR) emitters with full width at half maxima (FWHMs) below 20 nm remain absent. Herein, by strategically embedding diverse boron (B)/nitrogen (N) atomic pairs into a polycyclic aromatic hydrocarbon (PAH) skeleton, we propose a hybrid pattern for the construction of a long-wavelength narrowband MR emitter. The proof-of-concept emitter B4N6-Me realized orange-red emission with an extremely small FWHM of 19 nm (energy unit: 70 meV), representing the narrowest FWHM among all reported long-wavelength MR emitters. Theoretical calculations revealed that the cooperation of the applied para B-π-N and para B-π-B/N-π-N patterns is complementary, which gives rise to both narrowband and redshift characteristics. The corresponding organic light-emitting diode (OLED) employing B4N6-Me achieved state-of-the-art performance, e.g., a narrowband orange-red emission with an FWHM of 27 nm (energy unit: 99 meV), an excellent maximum external quantum efficiency (EQE) of 35.8 %, and ultralow efficiency roll-off (EQE of 28.4 % at 1000 cd m-2 ). This work provides new insights into the further molecular design and synthesis of long-wavelength MR emitters.

4.
Angew Chem Int Ed Engl ; 62(32): e202306413, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37308770

RESUMO

Building blocks and heteroatom alignments are two determining factors in designing multiple resonance (MR)-type thermally activated delayed fluorescence (TADF) emitters. Carbazole-fused MR emitters, represented by CzBN derivatives, and the heteroatom alignments of ν-DABNA are two star series of MR-TADF emitters that show impressive performances from the aspects of building blocks and heteroatom alignments, respectively. Herein, a novel CzBN analog, Π-CzBN, featuring ν-DABNA heteroatom alignment is developed via facile one-shot lithium-free borylation. Π-CzBN exhibits superior photophysical properties with a photoluminescence quantum yield close to 100 % and narrowband sky blue emission with a full width at half maximum (FWHM) of 16 nm/85 meV. It also gives efficient TADF properties with a small singlet-triplet energy offset of 40 meV and a fast reverse intersystem crossing rate of 2.9×105  s-1 . The optimized OLED using Π-CzBN as the emitter achieves an exceptional external quantum efficiency of 39.3 % with a low efficiency roll-off of 20 % at 1000 cd m-2 and a narrowband emission at 495 nm with FWHM of 21 nm/106 meV, making it one of the best reported devices based on MR emitters with comprehensive performance.

5.
ACS Appl Mater Interfaces ; 15(1): 1685-1692, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36579770

RESUMO

Developing red thermally activated delayed fluorescence (TADF) emitters concurrently with high efficiency and emission color close to the BT.2020 red standard is an ongoing challenge. Herein, we developed a new red TADF emitter BCN-TPA, in which two identical donors are attached at the para-positions of one fused phenyl ring in the acceptor framework. Such an arrangement mode can lead the donors with an obvious superimposed effect comparing the conventional arrangement with edge-capped donors on the acceptor. Thus, BCN-TPA yields enhanced overall donor strength with numerous superiorities, such as high oscillator strength and narrow singlet-triplet energy difference, thus giving rise to red-shifted emission with improved overall exciton utilization. In an organic light-emitting diode, BCN-TPA presents efficient deep-red electroluminescence with a maximum external quantum efficiency of 27.6% and a peak at 656 nm, corresponding to CIE coordinates of (0.686, 0.304), which are very close to the red primary in the BT.2020 standard. To the best of our knowledge, this is one of the topmost efficiencies in the field of deep-red TADF OLEDs. This work exemplifies an easy design principle for constructing high-performance deep-red TADF emitters, providing unique molecular-level insights toward improving color quality and elevating efficiency based on conventional D-A type molecular frameworks.

6.
Angew Chem Int Ed Engl ; 61(47): e202212575, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36167946

RESUMO

Multiple resonance (MR) type thermally activated delayed fluorescence (TADF) material is currently a research hotspot in organic light-emitting diodes (OLEDs) due to their high color purity and high exciton utilization. However, there are only a handful of MR-TADF emitters with emissions beyond the blue-to-green region. The very limited emission colors for MR-TADF emitters are mainly caused by the fact that so far molecular modifications of MR-TADF do not offer much change in the emission colors. Here, we report a new approach to modifying a prototypical MR core of DABNA by fusing carbazoles to the MR framework. The carbazole-fused molecule (TCZ-F-DABNA) basically maintains the MR-dominated features of DABNA while red-shifting the emission. Its OLED achieves an external quantum efficiency of 39.2 % with a peak at 588 nm, which is a record-high efficiency for OLEDs with peaks beyond 560 nm. This work provides a new approach for significantly tunning emission colors of MR-TADF emitters.

7.
Mater Horiz ; 9(8): 2226-2232, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35748653

RESUMO

Multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters have attracted much recent attention due to their narrow emission spectra and high photoluminescence quantum yields (PLQYs). Spectral broadening and concentration quenching at high doping concentrations are two issues currently limiting the development of MR-TADF emitters. However, the origins of these have not been fully clarified so far. In this work, by investigating emitters with the same MR cores but peripheral groups of different steric types, we distinguished that the spectral broadening and concentration quenching are mainly caused by excimer formation and triplet exciton annihilation, respectively. This understanding on aggregated behaviors of MR emitters provides new insight for the further development of high-performance MR-TADF emitters with low concentration sensitivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...